3.1.58 \(\int \frac {(a+b x^2)^{3/2}}{(c+d x^2)^2} \, dx\) [58]

3.1.58.1 Optimal result
3.1.58.2 Mathematica [A] (verified)
3.1.58.3 Rubi [A] (verified)
3.1.58.4 Maple [A] (verified)
3.1.58.5 Fricas [A] (verification not implemented)
3.1.58.6 Sympy [F]
3.1.58.7 Maxima [F]
3.1.58.8 Giac [B] (verification not implemented)
3.1.58.9 Mupad [F(-1)]

3.1.58.1 Optimal result

Integrand size = 21, antiderivative size = 131 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=-\frac {(b c-a d) x \sqrt {a+b x^2}}{2 c d \left (c+d x^2\right )}+\frac {b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{d^2}-\frac {\sqrt {b c-a d} (2 b c+a d) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt {c} \sqrt {a+b x^2}}\right )}{2 c^{3/2} d^2} \]

output
b^(3/2)*arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))/d^2-1/2*(a*d+2*b*c)*arctanh(x*( 
-a*d+b*c)^(1/2)/c^(1/2)/(b*x^2+a)^(1/2))*(-a*d+b*c)^(1/2)/c^(3/2)/d^2-1/2* 
(-a*d+b*c)*x*(b*x^2+a)^(1/2)/c/d/(d*x^2+c)
 
3.1.58.2 Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.11 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=\frac {\frac {d (-b c+a d) x \sqrt {a+b x^2}}{c \left (c+d x^2\right )}-\frac {\sqrt {-b c+a d} (2 b c+a d) \arctan \left (\frac {-d x \sqrt {a+b x^2}+\sqrt {b} \left (c+d x^2\right )}{\sqrt {c} \sqrt {-b c+a d}}\right )}{c^{3/2}}-2 b^{3/2} \log \left (-\sqrt {b} x+\sqrt {a+b x^2}\right )}{2 d^2} \]

input
Integrate[(a + b*x^2)^(3/2)/(c + d*x^2)^2,x]
 
output
((d*(-(b*c) + a*d)*x*Sqrt[a + b*x^2])/(c*(c + d*x^2)) - (Sqrt[-(b*c) + a*d 
]*(2*b*c + a*d)*ArcTan[(-(d*x*Sqrt[a + b*x^2]) + Sqrt[b]*(c + d*x^2))/(Sqr 
t[c]*Sqrt[-(b*c) + a*d])])/c^(3/2) - 2*b^(3/2)*Log[-(Sqrt[b]*x) + Sqrt[a + 
 b*x^2]])/(2*d^2)
 
3.1.58.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {315, 398, 224, 219, 291, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\int \frac {2 b^2 c x^2+a (b c+a d)}{\sqrt {b x^2+a} \left (d x^2+c\right )}dx}{2 c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{2 c d \left (c+d x^2\right )}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {2 b^2 c \int \frac {1}{\sqrt {b x^2+a}}dx}{d}-\frac {(b c-a d) (a d+2 b c) \int \frac {1}{\sqrt {b x^2+a} \left (d x^2+c\right )}dx}{d}}{2 c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{2 c d \left (c+d x^2\right )}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {2 b^2 c \int \frac {1}{1-\frac {b x^2}{b x^2+a}}d\frac {x}{\sqrt {b x^2+a}}}{d}-\frac {(b c-a d) (a d+2 b c) \int \frac {1}{\sqrt {b x^2+a} \left (d x^2+c\right )}dx}{d}}{2 c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{2 c d \left (c+d x^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {2 b^{3/2} c \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{d}-\frac {(b c-a d) (a d+2 b c) \int \frac {1}{\sqrt {b x^2+a} \left (d x^2+c\right )}dx}{d}}{2 c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{2 c d \left (c+d x^2\right )}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {2 b^{3/2} c \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{d}-\frac {(b c-a d) (a d+2 b c) \int \frac {1}{c-\frac {(b c-a d) x^2}{b x^2+a}}d\frac {x}{\sqrt {b x^2+a}}}{d}}{2 c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{2 c d \left (c+d x^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {2 b^{3/2} c \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{d}-\frac {\sqrt {b c-a d} (a d+2 b c) \text {arctanh}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} d}}{2 c d}-\frac {x \sqrt {a+b x^2} (b c-a d)}{2 c d \left (c+d x^2\right )}\)

input
Int[(a + b*x^2)^(3/2)/(c + d*x^2)^2,x]
 
output
-1/2*((b*c - a*d)*x*Sqrt[a + b*x^2])/(c*d*(c + d*x^2)) + ((2*b^(3/2)*c*Arc 
Tanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/d - (Sqrt[b*c - a*d]*(2*b*c + a*d)*ArcT 
anh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/(Sqrt[c]*d))/(2*c*d)
 

3.1.58.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 
3.1.58.4 Maple [A] (verified)

Time = 2.43 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.12

method result size
pseudoelliptic \(\frac {-\left (d \,x^{2}+c \right ) \left (a d +2 b c \right ) \left (a d -b c \right ) \arctan \left (\frac {c \sqrt {b \,x^{2}+a}}{x \sqrt {\left (a d -b c \right ) c}}\right )+\sqrt {\left (a d -b c \right ) c}\, \left (2 c \,b^{\frac {3}{2}} \left (d \,x^{2}+c \right ) \operatorname {arctanh}\left (\frac {\sqrt {b \,x^{2}+a}}{x \sqrt {b}}\right )+d x \sqrt {b \,x^{2}+a}\, \left (a d -b c \right )\right )}{2 \sqrt {\left (a d -b c \right ) c}\, d^{2} c \left (d \,x^{2}+c \right )}\) \(147\)
default \(\text {Expression too large to display}\) \(3349\)

input
int((b*x^2+a)^(3/2)/(d*x^2+c)^2,x,method=_RETURNVERBOSE)
 
output
1/2/((a*d-b*c)*c)^(1/2)*(-(d*x^2+c)*(a*d+2*b*c)*(a*d-b*c)*arctan(c*(b*x^2+ 
a)^(1/2)/x/((a*d-b*c)*c)^(1/2))+((a*d-b*c)*c)^(1/2)*(2*c*b^(3/2)*(d*x^2+c) 
*arctanh((b*x^2+a)^(1/2)/x/b^(1/2))+d*x*(b*x^2+a)^(1/2)*(a*d-b*c)))/d^2/c/ 
(d*x^2+c)
 
3.1.58.5 Fricas [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 907, normalized size of antiderivative = 6.92 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=\left [-\frac {4 \, {\left (b c d - a d^{2}\right )} \sqrt {b x^{2} + a} x - 4 \, {\left (b c d x^{2} + b c^{2}\right )} \sqrt {b} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) - {\left (2 \, b c^{2} + a c d + {\left (2 \, b c d + a d^{2}\right )} x^{2}\right )} \sqrt {\frac {b c - a d}{c}} \log \left (\frac {{\left (8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} + 2 \, {\left (4 \, a b c^{2} - 3 \, a^{2} c d\right )} x^{2} - 4 \, {\left (a c^{2} x + {\left (2 \, b c^{2} - a c d\right )} x^{3}\right )} \sqrt {b x^{2} + a} \sqrt {\frac {b c - a d}{c}}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}\right )}{8 \, {\left (c d^{3} x^{2} + c^{2} d^{2}\right )}}, -\frac {4 \, {\left (b c d - a d^{2}\right )} \sqrt {b x^{2} + a} x + 8 \, {\left (b c d x^{2} + b c^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) - {\left (2 \, b c^{2} + a c d + {\left (2 \, b c d + a d^{2}\right )} x^{2}\right )} \sqrt {\frac {b c - a d}{c}} \log \left (\frac {{\left (8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} + 2 \, {\left (4 \, a b c^{2} - 3 \, a^{2} c d\right )} x^{2} - 4 \, {\left (a c^{2} x + {\left (2 \, b c^{2} - a c d\right )} x^{3}\right )} \sqrt {b x^{2} + a} \sqrt {\frac {b c - a d}{c}}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}\right )}{8 \, {\left (c d^{3} x^{2} + c^{2} d^{2}\right )}}, -\frac {2 \, {\left (b c d - a d^{2}\right )} \sqrt {b x^{2} + a} x - {\left (2 \, b c^{2} + a c d + {\left (2 \, b c d + a d^{2}\right )} x^{2}\right )} \sqrt {-\frac {b c - a d}{c}} \arctan \left (\frac {{\left ({\left (2 \, b c - a d\right )} x^{2} + a c\right )} \sqrt {b x^{2} + a} \sqrt {-\frac {b c - a d}{c}}}{2 \, {\left ({\left (b^{2} c - a b d\right )} x^{3} + {\left (a b c - a^{2} d\right )} x\right )}}\right ) - 2 \, {\left (b c d x^{2} + b c^{2}\right )} \sqrt {b} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right )}{4 \, {\left (c d^{3} x^{2} + c^{2} d^{2}\right )}}, -\frac {2 \, {\left (b c d - a d^{2}\right )} \sqrt {b x^{2} + a} x + 4 \, {\left (b c d x^{2} + b c^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) - {\left (2 \, b c^{2} + a c d + {\left (2 \, b c d + a d^{2}\right )} x^{2}\right )} \sqrt {-\frac {b c - a d}{c}} \arctan \left (\frac {{\left ({\left (2 \, b c - a d\right )} x^{2} + a c\right )} \sqrt {b x^{2} + a} \sqrt {-\frac {b c - a d}{c}}}{2 \, {\left ({\left (b^{2} c - a b d\right )} x^{3} + {\left (a b c - a^{2} d\right )} x\right )}}\right )}{4 \, {\left (c d^{3} x^{2} + c^{2} d^{2}\right )}}\right ] \]

input
integrate((b*x^2+a)^(3/2)/(d*x^2+c)^2,x, algorithm="fricas")
 
output
[-1/8*(4*(b*c*d - a*d^2)*sqrt(b*x^2 + a)*x - 4*(b*c*d*x^2 + b*c^2)*sqrt(b) 
*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) - (2*b*c^2 + a*c*d + (2*b 
*c*d + a*d^2)*x^2)*sqrt((b*c - a*d)/c)*log(((8*b^2*c^2 - 8*a*b*c*d + a^2*d 
^2)*x^4 + a^2*c^2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 - 4*(a*c^2*x + (2*b*c^2 
- a*c*d)*x^3)*sqrt(b*x^2 + a)*sqrt((b*c - a*d)/c))/(d^2*x^4 + 2*c*d*x^2 + 
c^2)))/(c*d^3*x^2 + c^2*d^2), -1/8*(4*(b*c*d - a*d^2)*sqrt(b*x^2 + a)*x + 
8*(b*c*d*x^2 + b*c^2)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - (2*b*c 
^2 + a*c*d + (2*b*c*d + a*d^2)*x^2)*sqrt((b*c - a*d)/c)*log(((8*b^2*c^2 - 
8*a*b*c*d + a^2*d^2)*x^4 + a^2*c^2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 - 4*(a* 
c^2*x + (2*b*c^2 - a*c*d)*x^3)*sqrt(b*x^2 + a)*sqrt((b*c - a*d)/c))/(d^2*x 
^4 + 2*c*d*x^2 + c^2)))/(c*d^3*x^2 + c^2*d^2), -1/4*(2*(b*c*d - a*d^2)*sqr 
t(b*x^2 + a)*x - (2*b*c^2 + a*c*d + (2*b*c*d + a*d^2)*x^2)*sqrt(-(b*c - a* 
d)/c)*arctan(1/2*((2*b*c - a*d)*x^2 + a*c)*sqrt(b*x^2 + a)*sqrt(-(b*c - a* 
d)/c)/((b^2*c - a*b*d)*x^3 + (a*b*c - a^2*d)*x)) - 2*(b*c*d*x^2 + b*c^2)*s 
qrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a))/(c*d^3*x^2 + c^2*d 
^2), -1/4*(2*(b*c*d - a*d^2)*sqrt(b*x^2 + a)*x + 4*(b*c*d*x^2 + b*c^2)*sqr 
t(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - (2*b*c^2 + a*c*d + (2*b*c*d + a 
*d^2)*x^2)*sqrt(-(b*c - a*d)/c)*arctan(1/2*((2*b*c - a*d)*x^2 + a*c)*sqrt( 
b*x^2 + a)*sqrt(-(b*c - a*d)/c)/((b^2*c - a*b*d)*x^3 + (a*b*c - a^2*d)*x)) 
)/(c*d^3*x^2 + c^2*d^2)]
 
3.1.58.6 Sympy [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=\int \frac {\left (a + b x^{2}\right )^{\frac {3}{2}}}{\left (c + d x^{2}\right )^{2}}\, dx \]

input
integrate((b*x**2+a)**(3/2)/(d*x**2+c)**2,x)
 
output
Integral((a + b*x**2)**(3/2)/(c + d*x**2)**2, x)
 
3.1.58.7 Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}}}{{\left (d x^{2} + c\right )}^{2}} \,d x } \]

input
integrate((b*x^2+a)^(3/2)/(d*x^2+c)^2,x, algorithm="maxima")
 
output
integrate((b*x^2 + a)^(3/2)/(d*x^2 + c)^2, x)
 
3.1.58.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 317 vs. \(2 (109) = 218\).

Time = 0.30 (sec) , antiderivative size = 317, normalized size of antiderivative = 2.42 \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=-\frac {b^{\frac {3}{2}} \log \left ({\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2}\right )}{2 \, d^{2}} + \frac {{\left (2 \, b^{\frac {5}{2}} c^{2} - a b^{\frac {3}{2}} c d - a^{2} \sqrt {b} d^{2}\right )} \arctan \left (\frac {{\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} d + 2 \, b c - a d}{2 \, \sqrt {-b^{2} c^{2} + a b c d}}\right )}{2 \, \sqrt {-b^{2} c^{2} + a b c d} c d^{2}} - \frac {2 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} b^{\frac {5}{2}} c^{2} - 3 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a b^{\frac {3}{2}} c d + {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a^{2} \sqrt {b} d^{2} + a^{2} b^{\frac {3}{2}} c d - a^{3} \sqrt {b} d^{2}}{{\left ({\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{4} d + 4 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} b c - 2 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} a d + a^{2} d\right )} c d^{2}} \]

input
integrate((b*x^2+a)^(3/2)/(d*x^2+c)^2,x, algorithm="giac")
 
output
-1/2*b^(3/2)*log((sqrt(b)*x - sqrt(b*x^2 + a))^2)/d^2 + 1/2*(2*b^(5/2)*c^2 
 - a*b^(3/2)*c*d - a^2*sqrt(b)*d^2)*arctan(1/2*((sqrt(b)*x - sqrt(b*x^2 + 
a))^2*d + 2*b*c - a*d)/sqrt(-b^2*c^2 + a*b*c*d))/(sqrt(-b^2*c^2 + a*b*c*d) 
*c*d^2) - (2*(sqrt(b)*x - sqrt(b*x^2 + a))^2*b^(5/2)*c^2 - 3*(sqrt(b)*x - 
sqrt(b*x^2 + a))^2*a*b^(3/2)*c*d + (sqrt(b)*x - sqrt(b*x^2 + a))^2*a^2*sqr 
t(b)*d^2 + a^2*b^(3/2)*c*d - a^3*sqrt(b)*d^2)/(((sqrt(b)*x - sqrt(b*x^2 + 
a))^4*d + 4*(sqrt(b)*x - sqrt(b*x^2 + a))^2*b*c - 2*(sqrt(b)*x - sqrt(b*x^ 
2 + a))^2*a*d + a^2*d)*c*d^2)
 
3.1.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{3/2}}{\left (c+d x^2\right )^2} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{3/2}}{{\left (d\,x^2+c\right )}^2} \,d x \]

input
int((a + b*x^2)^(3/2)/(c + d*x^2)^2,x)
 
output
int((a + b*x^2)^(3/2)/(c + d*x^2)^2, x)